Conference Descriptive Kernel Convolution Network with Improved Random Walk Kernel 2024 457-468 Lee M-C, Zhao L, Akoglu L
Preprint Descriptive Kernel Convolution Network with Improved Random Walk Kernel 2024 Lee M-C, Zhao L, Akoglu L
Conference Fast Unsupervised Deep Outlier Model Selection with Hypernetworks 2024 • KDD : proceedings / International Conference on Knowledge Discovery & Data Mining. International Conference on Knowledge Discovery & Data Mining • 585-596 Ding X, Zhao Y, Akoglu L
Conference Machine Learning in Finance 2024 • KDD : proceedings / International Conference on Knowledge Discovery & Data Mining. International Conference on Knowledge Discovery & Data Mining • 6703-6703 Akoglu L, Chawla N, Domingo-Ferrer J, Kurshan E, Kumar S, Naware V, Rodriguez-Serrano JA, Chaturvedi I, Nagrecha S, Das M, Faruquie T
Preprint On the Detection of Reviewer-Author Collusion Rings From Paper Bidding 2024 Jecmen S, Shah NB, Fang F, Akoglu L
Preprint Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors 2024 Ding X, Xi R, Akoglu L
Preprint Pard: Permutation-Invariant Autoregressive Diffusion for Graph Generation 2024 Zhao L, Ding X, Akoglu L
Preprint TSA on AutoPilot: Self-tuning Self-supervised Time Series Anomaly Detection 2024 Deforce B, Lee M-C, Baesens B, Asensio ES, Yoo J, Akoglu L
Preprint Zero-shot Outlier Detection via Prior-data Fitted Networks: Model Selection Bygone! 2024 Shen Y, Wen H, Akoglu L
Conference 19th International Workshop on Mining and Learning with Graphs (MLG) 2023 • Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining • 5882-5883 Shah N, Fakhraei S, Zheng D, Fatemi B, Akoglu L
Journal Article A Comprehensive Survey on Graph Anomaly Detection With Deep Learning 2023 • IEEE Transactions on Knowledge and Data Engineering • 35(12):12012-12038 Ma X, Wu J, Xue S, Yang J, Zhou C, Sheng QZ, Xiong H, Akoglu L
Preprint ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural Network Approach 2023 Sotiropoulos K, Zhao L, Liang PJ, Akoglu L
Conference ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural Network Approach 2023 865-874 Sotiropoulos K, Zhao L, Liang PJ, Akoglu L
Journal Article Benefit-aware early prediction of health outcomes on multivariate EEG time series 2023 • Journal of Biomedical Informatics • 139: Shekhar S, Eswaran D, Hooi B, Elmer J, Faloutsos C, Akoglu L
Journal Article Data Augmentation is a Hyperparameter: Cherry-picked Self-Supervision for Unsupervised Anomaly Detection is Creating the Illusion of Success 2023 Akoglu L, Yoo J, Zhao T
Journal Article Deep Anomaly Analytics: Advancing the Frontier of Anomaly Detection 2023 • IEEE Intelligent Systems • 38(2):32-35 Xia F, Akoglu L, Aggarwal C, Liu H
Journal Article Density of states for fast embedding node-attributed graphs 2023 • Knowledge and Information Systems • 65(6):2455-2483 Zhao L, Sawlani S, Akoglu L
Journal Article Detecting Anomalous Graphs in Labeled Multi-Graph Databases 2023 • ACM Transactions on Knowledge Discovery from Data • 17(2): Nguyen HT, Liang PJ, Akoglu L
Preprint DSV: An Alignment Validation Loss for Self-supervised Outlier Model Selection 2023 Yoo J, Zhao Y, Zhao L, Akoglu L
Chapter DSV: An Alignment Validation Loss for Self-supervised Outlier Model Selection 2023 • Lecture Notes in Computer Science • 14169:254-269 Yoo J, Zhao Y, Zhao L, Akoglu L
Preprint End-to-End Augmentation Hyperparameter Tuning for Self-Supervised Anomaly Detection 2023 Yoo J, Zhao L, Akoglu L
Preprint Fast Unsupervised Deep Outlier Model Selection with Hypernetworks 2023 Ding X, Zhao Y, Akoglu L